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Abstract

‘l%c community of researchers studying global  climate change is preparing for the launch of the
first Earth Observing System (EOS) satellite. It will generate huge amounts of new data, filling
gaps in the information available to address critical questions about the atmosphere and surface of
Earth. But many data handling and data analysis problems must to be solved if we are to make
best use of the ncw measurements. In key areas, the experience and expertise of the statistics
community could be of great help.

1. Introduction

The Earth Observing System (EOS) is scheduled to lawlch  its first platform into polar orbit in June
of 1998. The payload includes five remote sensing instruments designed to study the surface and
atmosphere of Earth. In a broad sense, the purpose for making these observations is to find
indications of how Earth’s climate is changing, and to discover clues to the mechanisms that are
responsible for these changes. To this end, a 5 to 15 year program of global monitoring is
planned, covering many wavelengths, with spatial resolutions as small as 0.25 km and temporal
coverage as frequent as a day. Higher resolution data on regional scales will also be acquired.

The surface area of Earth is about 5 x 1($ kmz. At 0.25 km resolution, a single instrument
acquiring 36 channels of data, such as the Multi-angle Imaging SpcctroRadiomctcr (MISR) or the
Moderate Resolution Imaging Spectrometer (MODIS) on the EOS platform, will generate upwards
of 80 Gbyte/day,  or 30 TbyteJyear  of basic data. The geophysical quantities arc generally retrieved
at lower spatial resolution, but must include quality flags and other ancillary information, resulting
in a geophysical data set that will be no smaller than 37 byt.dycar for the MISR instrument alone.

The sheer volume of data creates unprecedented challenges for accomplishing basic data handling
operations, such as throughput and storage. But there am deepx  issues regarding the scientific use
of this huge amount of data. The EOS community has adopted a partial framework, and some
terminology, for discussing the questions we must face. However, in many areas the development
of an approach to the underlying issues is in its infancy. This paper begins with a brief review of
the data classification scheme we use to organize our thinking about data handling and analysis.
This is followed by discussions of some issues relating to specific classes of data, and a summary
of areas to which the statistics community maybe well-equipped to contribute.

2. Data Classification Scheme

The Committee on Data Management And Computing define five general classes of spacecraft data,
based on the degree of processing involved (CODMAC, 1982, and subsequent refinements):

c Level O -- The raw data stream from the spacecraft, as received at Earth

Q Level 1 -- Measured radiances, gcometricall  y and radiomctricall  y calibrated



● Level 2-- Geophysical parameters, at the highest rcsoluti  on available

● Levcl 3-- Avemged data, providing spatially and temporally “uniform” coverage

● Level 4-- Data produced by a theoretical model, possibly with measurements as inputs

This paper focuses on L,evel 2 and Level 3 data, which arc the main concerns of most global
change research scientists working on EOS instrument teams. Level 2 products are reported on an
orbit-by-orbit basis. For a polar-orbiting satellite such as EOS, the Level 2 sampling of Earth is
highly non-uniform in space and time, with coverage at high latitudes much more frequent than
near the aquator.  Level 2 data is needed when accuracy at high spatial scale is more important than
uniformity of coverage. These situations arise routinely for validation studies of the satellite
observations, in the analysis of field campaign data, and when addressing other local- and
regional-scale problems with satellite data.

The spatially and temporally uniform Level 3 data arc needed for global-scale budget calculations,
and for any problem that involves deriving new quantities from two or more measurements which
have diffcrvnt sampling characteristics. To derive a Level 3 product from Level 2 data, spatial and
temporal scales must be chosen. It is to this issue that wc turn next,

3. Grinning and Bidding to Create Level 3 Data

The creation of Level 3 data has traditionally involved the selection of a global, 2- or 3-dimensional
spatial grid, possibly a time interval as well, and “binning” the Level 2 data into the grid cells. The
binning process for large data sets usually entails taking the arithmetic mean and standard deviation
of all Level 2 data points falling into a grid cell, with possible trimming of outliers  or of
measurements flagged as “low quality” for other reasons. Typically, all points included in a grid
cell average am given equal weight Occasionally a median value will be used in place of the mean.

The leading contender for the standard EOS I,evcl 3 grid is a rectangular-based scheme similar to
one that has been used by the Earth Radiation Budget Experiment (ER13E)  (Green and Wiclicki,
1995a). In the proposed implementation for EOS, the Earth is divided zonally  into 1.25 degree
strips (about 140 km in width). Each strip is then divided into an integral number of quadrilaterals,
each approximately 140 km in kmgth,  with the origin at the Greenwich meridian. This produces a
nearly-equal ama grid.

A number of issues arise in using a grid of this sort for the Level 3 data. Anisotropy presents an
obstacle for calculating gradients, fluxes, and other quantities based on finite differences. Some
neighboring cells sham an edge whereas others share only a point, and there is no general rule as to
how the contributions of each should be weighted. only zonal  gradients can be calculated in a
consistent way on a global scale. Even in the meridional direction, the north-south cell boundaries
are aligned only along the prime meridian. Inhomogeneity presents a swond  set of problems,
since the distribution of glid cells varies with latitude, and there are singularities at the poles.

A third set of issues arises from the nesting properties of these grids. Nested grids can be used to
relate data sets taken at different spatial resolutions, such as data from ground-based; aircraft,
balloon, and satellite instruments. It is often necessary to compare these types of data (particularly
for validation work), and to use data from multiple sources to calculate new quantities. To form
sub-grids at length scales below 140 km, decisions must be made as to whether the subdivisions
will be equi-angular, which are unique and relatively easy to clcfinc,  or equal area, which has more
desirable sampling properties, but requires more complex ccl] boundaries that increase anisotropy.
Performing analysis on data sets from non-nested grids introduces errors that may be significant on
a global scale (Green and Wiclicki, 1995 b), and call  be arbitrarily large in regions where the
quantities of interest have significant gradients (Kahn cl al., 1991).



There are alternative grids, based on triangle or hexagon subdivisions of the spherical surface or a
projection thereof, that may alleviate some of these issues (1), Cam and P. Huber, personal
communication, MDS Workshop, 1995). A considerable body of work exists that explores the
characteristics of nested systems of such grids (White ct al., 1992, and references therein).

An effort is being organizfid  to develop such grid schemes into systems that EOS scientists can use
(Kicstcr, Kimmcrling,  Knighton, Olsen, Sahr, and White, personal communication, 1995). A
specific choice of grid system is being made, and its geometric properties characterize, Schemes
will be needed to address and store data at different levels within the grid system. If the
performance of a triangle or hexagon-based grid is promising, efficient translators to and from
commonly used addressing systems, such as latitude-longitude, and conversions to popular map
projections would need to be derived and itnplemcnted  in data processing and GIS software
packages widely used by the EOS community,

One would like to embed each data set into a grid within a nested system that is appropriate to its
resolution and sampling structure. This raises the related issues of how to seleet a “native” grid
sizz for a given data set, and how best to calculate the value and associated statistics to be assigned
to each grid cell from the Level 2 data for both continuous- and di.serete-valued quantities. Once
this is done, methods may be developed to aggregate and dis-aggregate grids at various spatial
resolutions, calculating the associated error. characteristics along with the data (N. Cressie,
personal communication, MDS Workshop, 1995).

Such a system would revolutionize the way the global climate research community works with
data.

4. Generating Level 2 Data

The generation of Level 2 geophysical quantities from calibrated radiances introduces a far more
diverse set of issues, since the retrieval algorithms vary greatly with the type of measurement made
and the retrieval strategy adopted. For specificity, I use the Ml SR aerosol retrieval process as the
basis for the discussion in this section (Diner et al., 1994).

Two MISR-mlated issues similar to ones that atise el.scwhere  are: how to determine the sensitivity
of the instrument to differences in atmospheric aerosol properties, and how to develop
climatologies  for the retrieved geophysical quantities based on existing constraints.

4.1. Sensitivity Studies

From the point of view of retrieving aerosol propertks  from MISR observations, the distinctions
worth reporting are determined by the sensitivity of the instrument. We use a theoretical model to
simulate the measurements at the 4 wavelengths and 9 viewing angles covered by the MISR
instrument. We run simulations for a wide range of aerosol sim distributions, compositions, and
amounts. The full parameter space that must be explored includes mixes of particle size
distributions and compositions, atmospheric relative humidity, and surface type.

We designate the one set of simulated rcflectances  as the “measured” case, and step through
“comparison” models covering a range of alternative size distributions, for example. We usc
simple %2 statistics to make the comparisons, such as:

$i
mk [ LM(l,k) - Lq,(l,k)]’

tibl = ‘“- ‘- ‘—–”iv(rnk)  “’k-’ @5,(l > k)
(1)

where Lmcs is the simulated “measured” reflectance, Lcrnp is the simulated reflectance for the
“comparison” model, 1 and k arc the indices for wavelc.ngth  and viewing angle, N is the number of



measurements included in the calculation, and Gabs is the abs~lutc measurement error  in the
reflectance. mk is the weight for terms related to viewing angle k, and -k> is the average of the
weights for all the viewing angles included in the sum.

Comparisons made in this way reduce the information content of as many as 36 individual
measurements (4 wavelengths x 9 angles) to a single. number. There is more information in the
data. Two partly independent ways to compare cases are the maximum deviation of all the
measurements used, and a X2 statistic weighted by the measurements at the nadir angle:

I L~,,(l,k) -1Lmp(l,k) 2

‘ k  Z-:wij  -  ‘-—”-Lq(l,nudir)

L= J–ii—- —.—— — .-—. —.
N (mk) ‘-’ ~ i-~
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where Onl is the relative measurement error. We arc expmimenting  with combinations of these
metrics as the criteria to be used for evaluating the comparison cases, both in the sensitivity
studies, and in the retrieval algorithm.

Our approach to covering the parameter space is also simple. We are planning first to vary particle
size distribution and amount for fixed composition, establishing the minimum number of sizes
needed to represent the range of expected values within the instrument sensitivity. The discrete
sizes will be used to determine sensitivity to composition, which is represented by the particle
index of refraction. The sensitivity to mixtures  will then be tested by a similar process.

These procedures are well-defined and systematic. But they arc empirical, and it is impractical to
capture every possible combination of conditions with them. In the absence of new ideas, we will
live with these limitations.

4 .2 .  Climatologies

The Level 2 retrieval algorithms for EOS must run in an automatic mode, rapidly processing huge
amounts of data at computing facilities far from the purview of the instrument teams. As a first
step in understanding the results, we plan to automatically compare them with “ the expectations” --
a climatology initially based on the best data available prior to launch.

Consider the aerosol climatology. The quantities of interest are the aerosol column amount and the
aerosol “type”, which summarizes particle composition, siz~ distribution, and shape. There exist
global satellite estimates of aerosol amount at 1 km resolution, over oceans only, on a weekly basis
for almost seven years. For these observations, particle type is assumed. There arc global models
of four of the main particle types, at spatial resolutions ranging from about 100 km to about 1000
km, at monthly or seasonal intervals. Numerous in situ measurements have also been made, with
every conceivable spatial and temporal sampling. Some report aerosol amount, others provide
information about aerosol type, and a few include both.

How do wc merge all these data into a “climatology?” Our current approach is to ingest monthly
cases of the global satellite data set into our geographic information system (GIS) asthe primary
constraint on aerosol amount. We will then use the, global models to assign aerosol type, on a
region-by-region basis (Figure 1). It is undecided as yet how the mix of particle types will be
determined from the models, or how the uncertainty in the results will be obtained. We plan to use
in situ measurements where available, to inlprove the constraints placed by the global data sets.
Again wc are undccidcd as to how to weight the information from different data sources, and how
to assign uncertainties. Lastly, we must develop the algorithm that compares the aerosol properties
derived from the’ satellite data with the climatology, and assigns a measure of “likelihood” to the
result.



Wc will develop pragmatic approaches to each of these problems, but a formal procedure for
constructing a climatology of this sort is beyond our current capability.

5. Summary of Issues

This paper concentrates on matters of potential interest to the statistics community that relate to the
generation of Level 2 and Level 3 data from EOS instruments (Table 1). For Level 3 data, the
main issues are: defining an effective system of nested grids, deriving procedures for ingesting
Lwcl 2 data into the system, and developing algorithms for aggregating and translating data that is
in the system. Level 2 data presents a more diverse set of issues; we focused on performing
sensitivity studies and developing climatologies.

The EOS community is preparing to derive geophysical quantities from measurements that will
begin appearing in June 1998. All being well, wc will soon face the challenges of actually
studying the data, summarizing the trends, identifying and characterizing the exceptions, and
exploring the implications of the results for further data acquisition, and for global climate
change... more than enough to keep several large and active communitiw of researchers very busy.
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TABLE 1. SUMMARY OF ISSUES

General Data Processing --
Throughput
Storage
Distribution
Sorting
Searehing
Documenting Assumptions, Constraints, Data Quality

Creating Level 3 Data --
Choice of Nested Grid System and Associated Software
Binning Algorithm (Continuous- and Discrete-Valued Quantities)
Measures of Certainty for Comparisons AmonS Level 3 Products

Sensitivity Studies --
Choice of Metrics to Distinguish Cases
Strategy for Running Cases in Multi-Dimcn.sional  Space
Data Visualization Techniques for Analyzing Results

Climatologies  - -
Approach to Combining Model-Based and Observational Constraints
Approach to Applying “ClirnatoIogical  Constraints” in the Retrieval

Studying the Observations --
Summarizing Tnmls
Identifying and Characterizing Exceptions (swprises)



. 11 8wub1

rn model

e ..1w

Region-by-Region Comparison:
If the models indicate that aerosol type is different from the sulfate
assumed in the satellite-based AVtiRR retrieval, the model results
will be favored, and the AVHRR optical depth may need to be scaled
for a different particle type.
If the models disagree amcog themselves, or with the AVHRR data,
about optical depth, the AVHRR result will be favored, possibly
scaled to account for particle type and calibration (Ignatov et al).
Where available, field data will be used to resolve discrepancies.
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Figure 1. Application of Constraints for Aerosol Climatology


